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Abstract The paper is devoted to the problem of
multipoint gene ordering with a particular focus on
“dominance” complication that acts differently in condi-
tions of coupling-phase and repulsion-phase markers. To
solve the problem we split the dataset into two comple-
mentary subsets each containing shared codominant
markers and dominant markers in the coupling-phase
only. Multilocus ordering in the proposed algorithm is
based on pairwise recombination frequencies and using
the well-known travelling salesman problem (TSP) for-
malization. To obtain accurate results, we developed a
multiphase algorithm that includes synchronized-marker
ordering of two subsets assisted by re-sampling-based
map verification, combining the resulting maps into an
integrated map followed by verification of the integrated
map. A new synchronized Evolution-Strategy discrete
optimization algorithm was developed here for the
proposed multilocus ordering approach in which common
codominant markers facilitate stabilization of the marker
order of the two complementary maps. High performance
of the employed algorithm allows systematic treatment
for the problem of verification of the obtained multilocus
orders, based on computing-intensive bootstrap and
jackknife technologies for detection and removing unre-
liable marker scores. The efficiency of the proposed
algorithm was demonstrated on simulated and real data.

Keywords Multilocus ordering · Synchronized
optimization algorithm · Dominant marker · Repulsion
phase · Bootstrap

Introduction

Mapping numerous markers has become central to genetic
analysis in the molecular-genomic era. An important step
in generating multilocus genetic maps based on results of
linkage analysis is in determining the true order of the
genetic loci mapped, e.g. Mendelian genes or DNA
markers. One of the possibilities in addressing this
problem is to recover the linear marker order from the
experimentally derived pairwise marker distance matrix
dij. A primary difficulty in ordering genetic loci using
linkage analysis is the large number of possible orders: for
n loci on a chromosome, n!/2 distinct orders should be
compared. In real problems, n might vary from dozens to
many hundreds of markers. Clearly, even for n � 30–50,
it would not be feasible to evaluate all n!/2 possible orders
using two-point linkage data. This is why multilocus
ordering is considered as an NP-hard combinatorial
problem (Wilson 1988; Olson and Boehnke 1990; Falc
1992; Ellis 1997). A solution to this problem based on the
maximum-likelihood approach employing Mapmaker
software takes an hour on a Pentium-IV (1,500 Mhz)
computer even for a modest case of n = 10. A second
group of complications in the marker-ordering problem
derives from various genetic and experimental obstacles
like dominant markers, marker misclassification, negative
and positive interference, and missing data.

Several methods have been proposed for determination
of marker order (Lathrop et al. 1985; Lander and Green
1987; Knapp et al. 1995; Newell et al. 1995; Liu 1998),
and implemented in software packages like LINKAGE
(Lathrop and Llouel 1984), MapMaker (Lander and Green
1987), FastMap (Curtis and Gurling 1993), JoinMap-3.0
(VanOoijen 2002) and OutMap (Whitaker and Williams
2001). Historically, the main approach to ordering
markers within linkage groups was based on multipoint
maximum-likelihood analysis. Various optimization tech-
niques for such analysis, including the branch and bound
method (Lathrop et al. 1985), simulated annealing
(Thompson 1984; Weeks and Lange 1987; Stam 1993;
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Jansen et al. 2001) and seriation (Buetow and Chakravarti
1987) were employed.

Olson and Boehnke (1990) compared several methods
for marker ordering, including multilocus likelihood and
more simple criteria based on two-point linkage data (by
minimizing the sum of adjacent recombination rates or
adjacent genetic distances). The simple criteria are based
on the biologically reasonable assumption that the true
order of a set of linked loci will be the one that minimizes
the total map length of the chromosome segment.

The accuracy of any ordering method may depend on
the distribution of recombination frequencies (presence of
large gaps), the percentage of missing data, noise caused
by marker misclassification and genetic interference. That
is why there is a tendency to test the obtained solution by
some quality control analysis, allowing for verification of
the derived multilocus order (Liu 1998). The most
popular approach to do that is based on re-sampling
procedures like bootstrap and/or jackknife analysis. Such
a methodology increases the reliability of the results, but
due to its computing-intensive nature it can be imple-
mented only for cost-efficient ordering algorithms.

Recently, Mester et al. (2003 revised) developed a
new, very fast and highly reliable algorithm for multilo-
cus ordering based on two-locus linkage data that
employs the Evolutionary Optimization Strategy (ES).
The present manuscript continues and adapts the proposed
approach for multilocus ordering with an excess of
dominant markers complicated by the presence of repul-
sion-phase configurations. In linkage analysis, situations,
when each of the parents provides to the F1 progeny one
(and only one) dominant allele at two linked loci (A/a and
B/b) (i.e. the resulting hybrid is F1 = Ab/aB), are referred
to as the “repulsion-phase”, in contrast to the “coupling
phase” when F1 = AB/ab (Bailey 1961). From the
viewpoint of information content, dominance brings a
loss of mapping information that is manifested in an
increase of variance of the estimates of recombination
rate, V(r) (Sall and Nilsson 1994). For example, the ratio
of variances V(r) for a pair of dominant coupling-phase
markers to that for co-dominant markers will be approx-
imately 2.0 for r = 0.05, whereas the same ratio for
repulsion-phase markers increases manifold. Even more
important is another negative consequence of the repul-
sion phase: a downward bias of the estimates of
recombination rate increasing with reduction of sample
sizes. This bias derives from the fact that the expected
number of recombinant phenotypes ab/ab in the F2
progeny of the repulsion heterozygote F1 = Ab/aB is
Nr2/4, where N is the sample size. If Nr2/4 < 1, it may
happen that no recombinants will appear in some samples
resulting in estimates of r = 0, whereas in other samples,
with recombinants, �r 6¼ 0 will be obtained, causing high
between-sample variation. For example, for N = 100 and r
= 0.05, the estimated value will be 0.0132 € 0.0503
(average of 10,000 Monte-Carlo runs), instead of the
expected 0.05.

Therefore, the dominance complication acts differently
in conditions of coupling-phase and repulsion-phase. As

was shown elsewhere (Mester et al. 2003, revised), when
all dominant markers were in the coupling phase, the
proportion of dominant and co-dominant markers had no
effect on the quality of marker ordering. A dramatically
different result will be obtained with dominant markers in
the repulsion phase (see below). It appeared that the
higher the proportion of repulsion-phase markers, the
lower the quality of multilocus ordering. High precision
of ordering in the coupling-phase data and low precision
in the repulsion-phase data justify splitting the data into
two subsets, each containing all co-dominant markers and
coupling-phase dominant markers only, and generating
two complementary multipoint maps for each linkage
group (Knapp 1995; Peng et al. 2000). Despite the general
tendency of using co-dominant markers for genetic
mapping (like RFLP, microsatellites and, recently,
SNP), for many organisms dominant markers (mainly,
PCR-based AFLP) remain a major tool, and RFLP or
microsatellites, if available, are used as anchor markers
(Peng et al. 2000; Menz et al. 2002; Parsons and Shaw
2002; P�rez-Enciso and Roussot 2002). Moreover, AFLP
markers have been employed as a cost-efficient tool for
constructing integrated physical and genetic maps (Klein
et al. 2000). In many organisms, the resource populations
should be provided with high-density maps including
many dozens and even hundreds of markers (Harushima

Fig. 1 Algorithm of the problem decision
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et al. 1998; Hall et al. 2001; Cone et al. 2002; Menz et al.
2002).

Once the strategy of generating two complementary
multipoint maps is adopted for mapping dominant
markers, the next step should be integration of the two
maps. This may encounter difficulties caused by local and
global map disturbances affecting the ordering of co-
dominant markers common for both maps, if the density
of such co-dominant markers is relatively low (e.g. in
cases when co-dominant markers serve as anchors). In
fact, the availability of shared co-dominant markers
enables mutual control during multilocus ordering (for
maintaining the same order of the shared markers) which,
together with computing-intensive jackknife and boot-
strap techniques (Efron 1979), may significantly improve
the quality of the resulting map. To implement the idea of
parallel ordering of two subsets of markers with shared
co-dominant markers, we developed a new “synchronized
ES algorithm” which optimizes both complementary
maps simultaneously with an additional restriction of
shared order of co-dominant markers in both maps. The
algorithm is represented in Fig. 1.

Materials and methods

Synchronized Evolution Strategy algorithm

Evolutionary Strategy foundations

Usually the optimization process of an objective function f(x) with
n real-value variables x = (x1, x2,…,xn) can be represented as an
evolution of the solution vector x2Rn. Evolution Strategy is a
heuristic algorithm mimicking natural population processes. The
numerical procedures in such optimization are based on simulation
of mutation and reproduction, followed by selection of the fittest
“genotypes”, employing the obtained values of the optimization
criterion.

Together with the Genetic Algorithm (Holland 1975) and
Evolutionary Programming (Fogel 1992), Evolution Strategy forms
the class of Evolutionary Algorithms (Nissen 1994). The evolu-
tionary strategies were proposed in the 1970s (Rechenberg 1973;
Schwefel 1977, 1987) to solve optimization problems with real-
value variables (for a recent survey of search strategies for
combinatorial problems see Muhlenbein et al. 1998). Evolution
Strategies define the size of a population and rules for the selection
process. Clearly, the multilocus ordering problem cannot be
directly represented in terms of ES with real-value formulation.
Combinatorial versions of ES differ from the real-value formulation
by specific representation of the solution vector x and mutation
mechanisms (Homberger and Gehring 1999; Mester 1999; Mester
et al. 2003 revised). An ES algorithm employs the following steps:

(1) Create l individuals (xk) of initial population P0.
(2) Compute the fitness f(xk), k = 1,…, l.
(3) If the optimization process is terminated, then stop.
(4) Select the m � l best individuals (selection phase).
(5) Create l/m offspring xk + 1 of each of m individuals by small

variation (mutation phase).
(6) Return to Step 2.

On each iteration, the mutation operator (referred to hereafter as
the mutator) changes the vector xk thereby producing a new
solution vector xk+1. Our version of the combinatorial ES algorithm
includes several mutators that mutate the solution vector via
removing and inserting b coordinates of xk (Mester 1999, 2003

submitted). In the mutation stage, the chosen mutator M(xk)
produces an offspring from the parent. If the first offspring
appeared to surpass the parent, the same mutator is again applied to
the new parent, and so on. If the offspring does not surpass the
parent, then to generate the new offspring, the algorithm uses the
next mutator. After mutation, the vector xk+1 is “improved” by
standard combinatorial procedures of order O(n2):

(1) 2-Opt (Lin and Kernighan 1973),
(2) Or-forward and Or-backward (Or 1976),
(3) 1-interchange (Osman 1993).

A more detailed description of the ES algorithm for multipoint
marker-ordering as a TSP problem is presented by Mester and co-
authors (2003, revised).

Synchronized multipoint marker-ordering
as a double TSP problem

For the non-synchronized version of the ordering problem, we
consider n markers enumerated arbitrarily by n coordinates xi2x
and for each n-1 marker pairs (xi, xj) a “distance” dij. As dij, either
pair-wise recombination fractions rij or map distances cij (e.g. in
Haldane or Kosambi metrics) will be employed. In combinatorial
formulation, the solution (individual) can be represented as a vector
x = (x1, x2, …, xn) that consists of n ranked discrete coordinates
(chromosomes) or as a directed graph G(A, B) with a set of nodes A
= {a1, a2, …, an} and a set of arcs B = A � A, where node aj, j > 0
represents the chromosome. The fitness function assigns to each of
the n(n – 1)/2 arcs (ai, aj) [or pair of coordinates (xi, xj)] a non-
negative dij cost of moving from element i to element j. The
problem is symmetric if and only if, dij = dji for all arcs. For
optimization of a combinatorial problem, one needs to define such
an order of the vector coordinates (or nodes) that will provide
minimum total cost. Different criteria can be used to discriminate
between competitive orders; for example, total distance measured
as a sum of distances between consecutive adjacent markers. These
criteria are based on a biologically reasonable assumption that the
true order of a set of linked loci will be the one that minimizes the
total length of the chromosomal map (see also Kirkpatrick et al.
1983; Press et al. 1986; Week and Lange 1987; Falk 1992; Schiex
and Gaspin 1997).

In the problem with two subsets of dominant markers (with
coupling-phase linkage within each of the sets and repulsion-phase
between the sets) one needs to optimize two separate, albeit related,
TSPs simultaneously under the condition of identical ordering of
shared co-dominant markers. Therefore, in this case we optimize
two complementary sets (vectors) of markers x1 and x2, respec-
tively, with the above restriction. Then, using the resulting two
maps x1 and x2, we restore the true marker ordering on the full map.
In our synchronized model, the minimum of the sum of distances
between adjacent markers on both vectors x1 and x2 was applied as
the optimization criterion (OC):

OC ¼
X

ij2x1

dijdij þ
X

ij2x2

dijdij ! min; ð1Þ

where dij = 0 or dij = 1 represent (in the criterion) only u � n – 1
distances out of all n(n – 1)/2 pairwise distances on each set of
markers respectively; dij dij > 0. Figure 2 illustrates the structure of
the synchronized parallel Evolution Strategy algorithm.

The program for simulations was written in Visual Basic 6.0.
Monte-Carlo testing experiments were conducted on a double-
processor Pentium-III (2 � 800 Mhz). In order to compare different
situations, the following coefficient of restoration quality [proxim-
ity between the “true” (simulated) and estimated orders] was
employed:

Kr ¼ ðn� 1Þ=
Xn�1

i¼1

jxi � xiþ1j; ð2Þ
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where xi is the digit code of the i-th marker in the currently ordered
marker sequence.

Simulated data sets

The simulation algorithm repeatedly generated a single-chromo-
some mapping population F2 for a chosen number of markers. The
following are the numerical values (ranges) of the main parameters
in the majority of experiments.

(1) The number of markers per chromosome: m = 50 or 100.
(2) Probability distributions for distances between adjacent mark-

ers: P [3 < d (cM) < 5] = 0.8; P [5 < d (cM) < 15] = 0.2, with
even distribution within each of the two ranges, for 50 markers,
and P [3 < d (cM) < 5] = 0.8; P [5 < d (cM) < 15] = 0.15,
P [15 < d (cM) < 35] = 0.05 for 100 markers.

(3) Proportions of co-dominant and the two types of dominant
markers were 0.1, 0.35 and 0.55, respectively, for 50 markers
(0.05, 0.475 and 0.475, respectively, for 100 markers).

(4) In case of arbitrary interference, the distribution of coincidence
coefficient values was: P (0 < c < 1, positive interference) = 0.5,
P (1 < c < 2, slight-to-moderate negative interference) = 0.25,
and P (2 < c < 20, moderate-to-strong negative interference) =
0.25.

(5) Population size n = 200.
(6) The proportion of individuals employed in jackknife runs, 90%.

Results

Improved multilocus ordering of dominant markers
by splitting into two independent maps

As indicated above, a high proportion of repulsion-phase
dominant markers may become a serious obstacle in
multilocus ordering; hence, the necessity of splitting the
data into two sets, each containing all co-dominant
markers and coupling-phase dominant markers only for
each linkage group (Knapp 1995; Peng et al. 2000). To
illustrate how dramatic this effect could be, we generated
an F2 data set with 50 co-dominant markers. Our
multilocus ordering algorithm (Mester et al. 2003,
revised) easily manages with such a situation, resulting
in a high quality restoring of marker order. The results
shown in Fig. 3a represent the neighbourhood matrix
based on 100 jackknife runs (with re-sampling 90% of
individuals at each run) employing the previously
described jackknife procedure of correction of double
recombinants (Mester et al. 2003, revised). Let us
consider now the results of application of the same
approach to data with a majority of dominant markers
(using the same data set but artificially converting a part
of the co-dominant markers into dominant markers). In
accordance to the description in the previous section, let
the two types of dominant markers comprise 55% and
35% of the total number of markers. The consequences
proved to be dramatic: in contrast to nearly deterministic
neighbouring in the first example, a rather large uncer-
tainty of ordering is detected by the jackknifing in the
second example (Fig. 3b).

Synchronized multilocus ordering of two maps
with shared co-dominant markers

Why synchronizing?

The entire set of co-dominant markers and the two types
of dominant markers can be subdivided into two sets,
each containing all co-dominant markers and coupling-
phase dominant markers. Then, the same ordering proce-
dure applied independently to each of the two sets gives
much more reliable results. However, it could not be
guaranteed that the obtained maps would have identical
orders for the shared co-dominant markers. In fact, it
appeared that for the range of parameters employed in our

Fig. 2 Synchronized parallel Evolution Strategies algorithm with
common restriction. In this scheme the following designations were
accepted: x1, x2 are current solution vectors of each TSP
respectively; x1

new, x2
new are solution vectors after mutation M(x)

and improving procedures I(x); x1
best, x2

best are best solution vectors
after last iteration; xC1, xC2 are common parts of solution vectors for
last iteration; f 1, f 2 are fitness from current and new solutions
respectively
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simulations (see previous section), such outcomes com-
prised about 10–25% (data not shown). This justifies the
need for further sophistication of the TSP-based algo-
rithms of multilocus ordering by including a new element,
i.e. the synchronized optimization (see Fig. 2).

The proposed procedure of synchronized ordering of
two parallel (complementary) maps aims to reduce the
uncertainty caused by the presence of markers in the
repulsion phase, as compared to the more traditional
approaches of treating the entire linkage group as a whole.
As was mentioned, in the majority (about 75–90%) of our
Monte-Carlo simulated problems there was no need for
synchronization at all, because the identical order of the
shared co-dominant markers is maintained automatically.

However, even for such cases, one cannot guarantee that
this will always be the case when massive bootstrap or
jackknife re-sampling iterations are applied for verifica-
tion of the obtained ordering. Indeed, the matrices of
pairwise recombination rates will change upon such re-
sampling, resulting thereby in possible sporadic violation
of the parallel ordering of the shared co-dominant
markers. Morever, by splitting the map into two comple-
mentary maps we may, in fact, generate an additional
problem: the appearance of gaps between nearby markers,
if neighbouring dominant markers in linkage phase
comprise a long chain. In such a case, synchronization
becomes an especially helpful tool. Let us illustrate this
aspect by two examples.

Example 1: the ordering of the markers of one of
two complementary chains in one of our simulations
was DM3CM6DM7DM9DM14CM19DM21…CM35…DM49,
where DMi, denotes the ith (dominant) marker locus and
CMj denotes the jth (co-dominant) marker locus. In our
example, the rate of recombination R14–19 between the
bold markers was 0.241 resulting in 89% of (correct)
neighbourhoods between these loci when synchronized
ordering was applied (using both complementary subsets
of markers). The remaining 11% comprise all cases of
excisions-transpositions with or without inversions (see
below) that included markers from the interval 14–49.
The importance of synchronization here can be shown by
the results obtained after artificially converting CM6 into
DM6 hence preventing its function as a shared (stabiliz-
ing) marker between the two subsets. In such a case, by
applying the same algorithm, we obtained only 60% of
(correct) neighbourhoods between markers 14 and 19,
whereas miss-neighbourhoods with markers from the
interval 14–49 are now three-fold (33%) compared to the
previous case.

Example 2: in this example, one of two comple-
mentary subsets was DM2DM4CM5…DM11…CM22…
DM37DM41CM42DM44DM46CM47DM49DM50 with a gap
between DM37 and DM41 (R37–41 was 0.295). Synchro-
nized ordering resulted here in 65% of correct (or nearly
correct) neighborhoods between DM37 and DM41 (or
CM42) loci due to the stabilizing effect of shared co-
dominant markers (CM42 and CM47). Indeed, by reducing
the stabilization effect via converting CM47 ! DM47 the
proportion of correct neighbourhoods between DM37 and
either DM41 or CM42 has reduced from 65% to 32%,
correspondingly; this was accompanied by an increase of
inversions involving DM37 and DM50 (or DM49), from less
than 10% to 38%.

Verification and correction of the complementary maps

In dealing with real data, one needs some tools to validate
the obtained multilocus order, and it is hard to choose the
solution from several (sometimes dozens) candidate
solutions (like those provided by Mapmaker). To cope
with this problem, some authors proposed computing-
intensive procedures based on various combinations of

Fig. 3 Frequency neighborhood matrices for ordering of 50
markers. (a) co-dominant markers (b) co-dominant and dominant
markers in repulsion phase
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jackknifing and bootstrapping (Efron 1979; Wang et al.
1994; Liu 1998). To validate and correct the obtained pair
of maps, the following analysis is conducted based on a
series of jackknife runs (Fig. 4). In each run based on a
sub-sample of individuals (e.g. 90%), we first order the
markers in the two maps synchronically (as explained
above in Fig. 2) and for each marker determine its two
(left and right) neighbours. Then, for each marker, the
frequency distribution of its closest left and right neigh-
bours is calculated and the unstable neighbourhoods are
detected using the entire set of generated jackknife runs.
Note, that in dealing with real data, one may prefer to use
the bootstrap technique instead of jackknifing, e.g. when
the sample size is very limited.

Several factors can generate uncertain neighbourhoods
among markers: (1) a small distance between markers,
e.g. 1–3 cM for a sample size of about 200 or less, that in
the presence of dominant markers on some bootstrap or
jackknife iterations will give zero recombination rates; (2)
a strong negative interference (Peng et al. 2000; Boyko et
al. 2002; Esch and Weber 2002), which may violate the
principle “the whole is larger than its parts” and result in
local inversion of marker order; and (3) the presence of a
big interval between nearby markers, derived from the
division of the initial map into two complementary maps,
if one-phase dominant markers comprised a contiguous
chain. In the last case, one may observe map distortions of
inversion-like type or excision-transposition with or
without inversion.

Integrating the complementary maps

We consider here some simple ways of combining the
verified complementary maps into an integrated map with
subsequent testing of the reliability of the resulting map.
This process should employ the marker ordering estab-
lished on the previous steps, so that the integration step
will not change the relative ordering of markers within
each of the two subsets. However, the results of the
integration step also need verification, in order to evaluate
the reliability of the relative positioning of markers of the
two complementary subsets in the final map.

Joining the two ordered marker subsets

In accordance with the algorithm of synchronized order-
ing, the complementary maps have identical orders of the
co-dominant markers, although the summed-up lengths of
intervals flanked by identical pairs of co-dominant
markers may be different in the two complementary
maps (because of different interior dominant markers).
The combination of the dominant markers from the
complementary maps is conducted for consequent pairs of
intervals defined by neighbouring co-dominant markers.
First, the recombination rates are transformed into genetic
distances using some mapping function (e.g. Kosambi or
Haldane). Consider an interior interval CMi–CMi+1. One
of the complementary maps that displayed a shorter
summed length of CMi–CMi +1 is normalized to have the
same summed length of its subintervals for CMi–CMi+1 as
the first one. Then, we can combine the dominant markers
of the two maps within the co-dominant markers flanking
the considered interval. For the tail intervals we do not
conduct scale transformations.

Verification, correction and testing the efficiency
of the proposed procedure

Clearly, the reliability of the obtained joined map is the
most important point of the entire algorithm, hence the
need of tools for its verification (Fig. 5). Two major
possibilities could be proposed to test the integrated map.
First, using the established orders of the markers on the
two complementary maps, one can employ bootstrap or
jackknife re-sampling to evaluate the neighbourhood
probabilities of the markers in the joined map. In addition,
the decision can be based on the stability of the averaged
ranks of the markers in an integrated map (if the stability
is measured as an inverse of the variance of the ranks
across the bootstrap runs). Markers that badly fit these
two criteria should be removed from the map.

To illustrate the efficiency of the proposed algorithm
of synchronized ordering of split data sets with subse-
quent integration and verification of each step (the
algorithm will be referred to as SOI-v) we generated
two series of mapping examples: ten data sets with 50
markers and ten with 100 markers, with parameters

Fig. 4 Verification and correction of the complementary maps by
jackknife analysis. n is a current jackknife number of nj produced
jackknives, In is termination criterion (1 – needs correction, 0 –
does not need correction)
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indicated above in the “Simulated data sets” section. For
comparison, the same data sets have also been analyzed
using the standard package JoinMap-3.0 (VanOoijen
2002). The quality of marker ordering in the resulting
maps (Table 1) was defined by the coefficient of
restoration (0 � Kr � 1.0), and proved to be very high
for our algorithm. Nevertheless, the increase of marker
density tended to reduce slightly the quality of ordering:
Kr = 0.887 € 0.013 for maps with 50 markers and Kr =
0.796 € 0.024 for maps with 100 markers; F1,18 = 7.06,
p = 0.016. For JoinMap, the effect of marker density was
higher: Kr = 0.729 € 0.024 for maps with 50 markers and
Kr = 0.463 € 0.057 for maps with 100 markers; F1,18 =
18.59, p = 0.00042.

An example of application on real data:
mapping wheat chromosome 1B

We illustrate now the efficiency of the proposed approach
using real data on a wheat mapping population (Peng et

al. 2000). The experiment was performed on an F2
progeny of a cross between wild emmer wheat Triticum
dicoccoides (from the Mt. Hermon, Israel) and a Triticum
durum cultivar, Langdon. The tetraploid T. dicoccoides is
the progenitor of cultivated wheat; hence, the genetic
dissection of quantitative trait differences between the
wild species and the cultivated crop is of great interest
from the viewpoint of domestication evolution (Peng et
al. 2003). It is also important for the ever-increasing
utilization of T. dicoccoides as a rich genetic resource for
wheat improvement. The molecular markers (microsatel-
lites and AFLPs) were scored on 150 F2 individuals
resulting in two versions of genetic maps each built on
coupling phase dominant markers. Here we employ this
data to illustrate the algorithms proposed in this article.

Let us start our example from the two maps build using
Mapmaker (Peng et al. 2000) (in the list the co-dominant
markers are denoted by c):

Fig. 5 Verification and correction of the integrated map by
jackknife analysis. n is a current jackknife number of nj produced
jackknives, In is the terminate parameter (1 – needs correction, 0 –
does not need correction)

Table 1 Comparing the quality of multilocus mapping using the
standard JoinMap algorithm and synchronized ordering with
subsequent integration and verification algorithm (SOI-v). Kr is
the coefficient of restoring marker ordering; the number of removed
(unreliable) markers is shown in the brackets. Comparing the two
ordering algorithms using ANOVA indicates highly significant
superiority of SOI-v (F1,36 = 49.33, p < 10–6) and a negative effect
of marker density on the quality of ordering (F1,18 = 7.06, p = 0.016,
for SOI-v, and F1,18 =18.59, p = 0.00042, for JoinMap)

Set Number of shared
co-dominant markers

Kr using
JoinMap

Kr using
SOI-v

50 markers

S1 7 0.816 0.960
S2 4 0.765 0.859
S3 3 0.830 0.830
S4 7 0.636 0.875
S5 5 0.662 0.859
S6 4 0.777 0.816
S7 8 0.765 0.890
S8 7 0.653 0.845
S9 5 0.753 0.859
S10 4 0.628 0.875

100 markers

S1 4 0.303 0.660
S2 11 0.259 0.900
S3 8 0.414 0.779
S4 6 0.603 0.825 (4)
S5 3 0.607 0.825 (7)
S6 8 0.225 0.853 (3)
S7 3 0.520 0.839 (4)
S8 4 0.673 0.825 (3)
S9 4 0.700 (5) 0.687 (6)
S10 5 0.325 (5) 0.767 (18)

No. Chromosome 1BH Chromosome 1BL

1. Ws (c) Ws (c)
2. P56M50k P55M56a
3. Xgwm550a (c) Xgwm550a (c)
4. Xgwm911 (c) Xgwm911 (c)
5. P55M53k Xgwm264c
6. Xgwm273a (c) P57M51j
7. YrH52 (c) P55M60v
8. Xgwm413 (c) P55M60a
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It is worth mentioning that Mapmaker suggests a few
best solutions that differ in the likelihood level, and it is
the user who should make the decision. The decision is
“easy” when the best alternative is by orders of magnitude
better than its competitors. But if the differences are not so
high, it is difficult to make a justified choice without
additional tools. Clearly, jackknife or bootstrap analysis
would be useful but it is unpractical for Mapmaker (due to
time limits) when the number of markers is higher than
12–15. To test the reliability of the obtained ordering, we
employed to each of these maps the jackknifing procedure
described in Mester et al. (2003, revised), with 90% of
randomly chosen genotypes at each run. The obtained
estimates of neighbourhood probabilities point to an
indefinite region (marked by bold) in each of the two
maps produced by Mapmaker. These regions include eight
co-dominant markers (from Xgwm273a to Xgwm498a):

One may assume that the neighbourhood instability
(that can be seen from the above matrices), derives from
some non-concordance of markers-observed segregation
(e.g. due to reading errors or negative interference, Mester
et al. 2003, revised). This assumption is confirmed
experimentally: by taking out marker Xgwm273a we
obtain the orders with much higher neighbourhood
stability (p = 1 for the H-version of the map and
p > 0.9 for the L-version). It can be seen that independent
analysis of the two groups resulted in non-identical
relative ordering of the shared markers. This is exactly the
reason why synchronous analysis keeping the same order
of the shared markers is necessary.

The synchronous ordering of the initial map versions
gives the orders with a problematic region identical to that
revealed in the foregoing analysis:

(Table see page 1110)

After exclusion marker Xgwm273a, the following
orders were obtained (each with p > 0.95):

Table (continued)

No. Chromosome 1BH Chromosome 1BL

9. Xgwm264a (c) Xgwm273a (c)
10. Xgwm11 (c) YrH52 (c)
11. Xgwm18 (c) Xgwm413 (c)
12. P56M50np (c) Xgwm264a (c)
13. Xgwm498a (c) Xgwm11 (c)
14. P55M53b Xgwm18 (c)
15. P56M60ac P56M50np (c)
16. P56M53m Xgwm498a (c)
17. Xgwm403a Xgwm131a
18. UBC199c Xgwm153
19. P56M60k Xgwm268
20. Xgwm124 (c) Xgwm124 (c)
21. UBC277a UBC399
22. Xgwm131b Xgwm259a
23. P57M52u P56M52a
24. Xgwm140

Chromosome 1BH

No. 4 5 6 7 8 9 10 11 12 13 14 15

5 1 1
6 0.17 0.84 0.92 0.07
7 1 0.17 0.83
8 0.83 1 0.14 0.03
9 0.84 1 0.03 0.11 0.02

10 0.92 0.14 0.03 0.86 0.03 0.02
11 0.03 0.11 0.86 0.95 0.05
12 0.02 0.03 0.95 1
13 0.02 0.05 1 0.93
14 0.07 0.93 1

Chromosome 1BL

No. 7 8 9 10 11 12 13 14 15 16 17 18

8 1 0.99 0.01
9 0.99 0.6 0.4 0.01

10 0.99 1 0.1
11 0.99 1 0.1
12 0.01 0.6 0.01 0.01 0.98 0.38 0.01
13 0.4 0.96 0.62
14 0.01 0.38 0.62 0.9 0.09
15 0.01 0.9 1 0.09
16 0.09 1 0.91
17 0.09 0.91 1
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The final step is integration of the two maps. It results in
the following order:

WS, P55M56a, P56M50k, Xgwm550a, Xgwm911,
Xgwm264c, P57M51j, P55M60v, P55M60a, P55M53k,
YrH52, Xgwm413, Xgwm264a, Xgwm11, Xgwm18,
P56M50np, Xgwm498a, P55M53b, Xgwm131a,
P55M60ac, P56M53m, Xgwm403a, UBC199c,
Xgwm153, P56M60k, Xgwm268, Xgwm124, UBC277a,
UBC399, Xgwm131b, Xgwm259a, P57M52u, P56M52a,
Xgwm140.

Two (bold) marker pairs (P55M60a-P55M53k and
P55M53b-Xgwm131a) displayed high uncertainty in
the integrated maps and are shown in the most
plausible order: in the first case, with p = 0.75 it is
P55M60v-P55M60a-P55M53k (and P55M60v-P55M53k-
P55M60a, with p = 0.25), and in the second case,
with p = 0.53 it is Xgwm498a-P55M53b-Xgwm131a (and
Xgwm498a-Xgwm131a-P55M53b, with p = 0.47). For the
reminder markers nearly all neighborhood probabilities
were p = 0.98–1.0. To resolve the uncertainty of the
foregoing two islands (if repeated DNA analysis is
impossible), one can exclude one of the problematic
markers. In our example, after excluding P55M53k from
the first pair and Xgwm131a from the second pair, we
obtained the final order with neighbour probabilities
p � 0.99.

Discussion

This paper continues and adapts the proposed approach
for multilocus ordering with an excess of dominant
markers complicated by the presence of repulsion-phase

linkages. We considered situations complicated by a high
proportion of dominant markers in the repulsion phase
and a high negative interference. As was shown in our
previous analysis (Mester et al. 2003, revised), when all
dominant markers were in the coupling phase, the
proportion of dominant and co-dominant markers had
no serious effect on the quality of marker ordering. A
dramatically different result was obtained with dominant
markers in the repulsion phase. It appeared that the higher
the proportion of repulsion-phase markers, the lower the
quality of multilocus ordering. High precision of ordering
in the coupling-phase data and low precision in the
repulsion-phase data justify splitting the data into two
sets, each containing all co-dominant markers and
coupling-phase dominant markers only, and generating
two complementary maps for each linkage group (Knapp
1995; Peng et al. 2000).

However, this approach may encounter difficulties
caused by local and global map disturbances affecting the
ordering of co-dominant markers common for both maps,
if the density of shared co-dominant markers is relatively
low (e.g. in cases when co-dominant markers serve as rare
anchors). In fact, the availability of shared co-dominant
markers enables mutual control during multilocus order-
ing, which together with computing-intensive jackknife
and bootstrap techniques (Efron 1979) may significantly
improve the quality of the resulting map. To implement
this idea of parallel ordering of two subsets of markers
with common co-dominant markers, we developed a new
“synchronized ES algorithm” which optimizes both
complementary subsets simultaneously with an additional
restriction of the shared order of co-dominant markers in
both maps. Clearly, after synchronized optimization two

Chromosome 1BH

No. 4 5 6 7 8 9 10 11 12 13 14

5 0.98 0.05 0.74 0.19
6 0.05 0.45 0.05 0.5 0.67 0.23 0.02
7 0.74 0.45 0.81
8 0.19 0.05 0.81 0.8 0.12 0.03
9 0.01 0.50 0.80 0.53 0.14 0.02

10 0.67 0.12 0.53 0.66 0.02
11 0.23 0.03 0.14 0.66 0.89 0.05
12 0.02 0.02 0.02 0.89 1 0.05
13 0.05 1 0.95
14 0.05 0.95 1

Chromosome 1BL

No. 7 8 9 10 11 12 13 14 15 16 17 18

8 1 0.06 0.73 0.19 0.01
9 0.06 0.45 0.05 0.5 0.67 0.23 0.02

10 0.73 0.45 0.81
11 0.19 0.05 0.81 0.8 0.12 0.03
12 0.01 0.5 0.8 0.53 0.14 0.02
13 0.67 0.12 0.53 0.66 0.02
14 0.23 0.03 0.14 0.66 0.89 0.05
15 0.02 0.02 0.02 0.89 1 0.05
16 0.05 1 0.95
17 0.05 0.95 1
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complementary maps are obtained, and one more major
step is needed to obtain an integrated map.

In this paper we proposed a multi-phase algorithm
(SOI-v) which includes splitting the data set on two
complementary subsets (S), synchronized marker-order-
ing optimization (O) of the subsets, integration of the two
maps into one (I) and verification of the integrated map
(v). For synchronized optimization we successfully
applied the Evolution Strategy algorithm that was
recently adopted for multilocus ordering by Mester and
co-authors (2003, revised). The efficiency of the SOI-v
algorithm was checked on two generated series of
mapping examples: with 50 and 100 markers (Table 1).
The quality of marker ordering in the resulting maps was
defined by the coefficient of restoration (0 � Kr � 1.0),
and proved to be very high for the proposed algorithm,
especially at higher marker density (Table 1).

Clearly, the Kr indicator is impossible to calculate for
real data. However, using bootstrap analysis, one can
easily control the reliability of the obtained multipoint
ordering and detect markers and/or marker scores that are
problematic, and should be either removed or repeatedly
genotyped. Likewise, the proposed tools allow revealing
chromosomal segments that require saturation by addi-
tional markers in order to achieve the desired reliability,
or vise versa; the regions where the marker order cannot
be recovered unequivocally due to high marker density
and population size was not sufficient to resolve tight
linkages. This formulation of jackknife- or bootstrap-
based diagnosis of uncertain local orders may be espe-
cially useful when one becomes interested in targeting
specific chromosomal regions, e.g. in map-based cloning.
Beside the importance in joint mapping of dominant and
co-dominant markers, the proposed approach of synchro-
nized multipoint ordering may be useful in integrated
genetic and physical mapping, phylogenetic comparisons
of linkage groups, comparisons of conserved physical
orders and other related subjects of genome analysis
(Yang and Womack 1998; Klein et al. 2000; Hall et al.
2001; Bourque and Pevzner 2002).
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